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l Department of Pulmonology, Centre Hospitalier Toulon Sainte-Musse, Toulon, France
m Centre Hospitalier Universitaire de Caen, Service de Pneumologie et Oncologie Thoracique, 14000 CAEN, France
n Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire Grenoble, Grenoble, France
o Department of Pulmonology, Centre Hospitalier Le Mans, Le Mans, France
p Department of Pulmonology, Ponchaillou University Hospital, Rennes, France
q Department of Pulmonology, CHI Créteil, Créteil, France
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A B S T R A C T

We investigated whether angiogenesis-related microRNAs (miRNAs) predict survival in patients with pleural 
mesothelioma (PM) treated with bevacizumab plus pemetrexed-platinum chemotherapy in the Mesothelioma 
Avastin Cisplatin Pemetrexed Study (’MAPS’, NCT00651456) phase 3 trial phase III trial (NCT00651456). 
Twelve miRNAs were measured in FFPE samples from 236 of the 448 MAPS trial patients (50.8 %), normalized to 
RNU48. Overall survival (OS) and progression-free survival (PFS) were analyzed by miRNA expression using 
univariate and multivariate models adjusted for clinical covariates. Internal validation was performed by 
bootstrapping. Interaction tests assessed the predictive value of each miRNA with respect to treatment arm. Low 
miR-193b-3p expression was associated with longer OS in PM patients, as shown in both univariate and 
multivariate analyses (adjusted HR = 0.87 [0.81–0.93], p < 0.001; bootstrap inclusion fraction [BIF]: 81.3 %), 
with both treatment arms analyzed together. It also predicted longer PFS (adjusted HR = 0.91 [0.85–0.97], p =
0.0042). Interaction tests revealed that for four miRNAs (miR-155–5p, miR-29c-5p, miR-132–3p, and miR- 
100–5p), lower expression levels were associated with greater efficacy of the bevacizumab/cisplatin/pemetrexed 
combination. Notably, the interaction between treatment arms and miR-132–3p expression was statistically 
significant (p = 0.004). In the IFCT-GFPC-0701 MAPS trial, low miR-193b-3p expression demonstrated signifi
cant independent prognostic value, being associated with longer OS and PFS. Additionally, low expression of 
miR-155–5p, miR-29c-5p, miR-132–3p, and miR-100–5p showed independent predictive value for improved 
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survival in the bevacizumab plus chemotherapy arm. Thus, a simple qRT-PCR assay of these four miRNAs may 
help identifying PM patients most likely to benefit from bevacizumab.

Introduction

Pleural mesothelioma (PM) is a rare but aggressive cancer with a 
poor prognosis, primarily caused by occupational exposure to asbestos 
fibers [1,2]. The Mesothelioma Avastin Cisplatin Pemetrexed Study 
(MAPS) demonstrated the benefit of adding bevacizumab (a full-length 
recombinant humanized monoclonal antibody targeting VEGF) to cis
platin/pemetrexed chemotherapy, improving both overall survival (OS) 
and progression-free survival (PFS) in 448 patients with pleural meso
thelioma (PM) [3,4]. The median OS reached 18.8 months, a benchmark 
that remains unsurpassed despite recent advances in immunotherapy for 
PM. Unexpectedly, classical neoangiogenesis biomarkers such as serum 
VEGF concentration [3] or VEGFR2/CD34 expression [5], failed to 
predict the response of PM patients to bevacizumab. Therefore, alter
native biomarkers are needed to identify patients who may derive a 
survival benefit from bevacizumab-based therapy. Among potential 
candidates are microRNAs (miRNAs), small non-coding RNA molecules 
encoded by the eukaryotic genome. By repressing translation or pro
moting degradation of their target mRNAs, miRNAs regulate key cellular 
processes, including proliferation, growth, metabolism, and apoptosis 
[6]. Therefore, dysregulation of miRNA expression (either gain or loss) 
contributes to cancer development, including pleural mesothelioma 
(PM) (for reviews: [7,8]), and plays a role in key tumor processes such as 
neoangiogenesis [9], with such miRNAs often referred to as "angio-
miRNAs". The expression of certain miRNAs is already known to predict 
the response to anti-angiogenic treatments in cancers such as colorectal 
cancer and glioblastoma. In ovarian cancer, studies have identified 
miRNAs as predictors of response to anti-angiogenic therapy by 
comparing their expression levels in responders versus non-responders 
using surgical samples from the primary tumor, collected before or 
after treatment [10–13]. Therefore, microRNAs may have both diag
nostic and prognostic potential in PM patients, as differences in miRNA 
expression between mesothelioma and normal mesothelial cells have 
already been demonstrated [14] (for review: [15]). Such molecules 
could serve routine theranostic purposes, as microRNAs are stable (un
like mRNAs) and easily measurable by qRT-PCR from routine fresh or 
archived formalin-fixed paraffin-embedded (FFPE) diagnostic samples, 
even of small size.

Materials and methods

Study design and participants

From February 13th, 2008, to January 5th, 2014, 448 patients were 
randomly assigned 1:1 to one of two treatments (223 to pemetrexed plus 
cisplatin and bevacizumab and 225 [50 %] to pemetrexed plus cisplatin) 
(Fig.S1). The formalin-fixed paraffin-embedded (FFPE) specimens were 
available for 245 patients (54,7 %, Fig.S1). Specific informed consent 
was obtained for the biological studies (Bio-MAPS), and the trial was 
approved by the appropriate ethics committee (CPP Ref 2007–20 Nord- 
Ouest III, France) with clinical main results previously reported else
where [3].

MicroRNA assay

The miRNAs were extracted from the FFPE surgically resected tumor 
specimens containing at least 70 % of tumor cells using the miRNAeasy- 
FFPE kit (Qiagen™) according to the respective manufacturer’s in
structions. The miRNA concentration was measured with the NanoDrop 
2000 spectrophotometer (Thermo Scientific). The absorbance ratios 
(A230/A260 and A260/A280) were systematically assessed to verify the 

quality of the miRNA solution and to confirm the absence of contami
nation by solvents or proteins. These ratios were required to be between 
1.8 and 2.0 for the quality to be considered sufficient for further anal
ysis. If the ratios fell outside this range, the extraction and/or purifica
tion process was repeated.

Five ng of miRNAs were next retrotranscribed and amplified (PCR) 
using the TaqMan MiRNA Reverse transcription kit (Applied Biosystem) 
and the following Taq-Man MiRNA probes (Applied Biosystem), i.e. 20 
microRNAs linked to tumor angiogenesis identified by literature cura
tion and databases analysis with altered expression in PM: has-miR-15a- 
5p (ID000389), has-miR-15b-5p (ID000390), has-miR-21–5p 
(ID000397), has-miR-29c-5p (ID000415), has-miR-34c-5p (ID000428), 
has-miR-100–5p (ID000437), has-miR-126–5p (ID000450), has-miR- 
126–3p (ID000451), has-mir-132–3p (ID000457), has-miR-141–5p 
(ID000463), has-miR-155–5p (ID000479), has-miR-193a-3p 
(ID002250), has-miR-193b-3p (ID002367), has-miR-200a-3p 
(ID000502), has-miR-200b-3p (ID002251), has-miR-200c-3p 
(ID002300), has-miR-205–5p (ID000509), has-miR-210–3p 
(ID000512), has-miR-424–5p (ID000604) and has-miR-486–5p 
(ID001278) (Fig.S2). Each measurement was performed in duplicate, 
and the value retained for a given data point was the average of the two 
measurements, which were required not to differ by >1 Ct. A Ct value 
greater than 36 was considered indicative of no expression of the miRNA 
studied in the analyzed sample.

We then selected candidate miRNA biomarkers with a potential 
prognostic effect on overall survival (p < 0.2), using Cox models with 
Bonferroni-Holm correction leading to the identification of 12 miRNAs, 
for which data were available in 38 to 51 % of patients’ samples (Fig.S2).

The RT-PCR data were normalized to the small nucleolar house- 
keeping RNA RNU48 (SNORD48) (assay ID 001,006). The average 
expression of RNU48 across all analyzed samples was 25.67 ± 0.15 Ct. 
Samples with an RNU48 Ct value greater than 30 were considered to 
have insufficient quality for miRNA quantification.

Positive standards and reaction mixtures lacking the reverse tran
scriptase were used routinely as controls for each miRNA sample. 
Relative quantification was conducted using the deltaCt method, where 
deltaCt is CtmiRX-CtRNU48.

Statistical analysis

The Bio-MAPS study was a pre-specified ancillary and exploratory 
analysis. Baseline characteristics of patients with and without available 
microRNA profiling were compared using chi-squared tests for cate
gorical variables, Student’s t-tests for continuous variables, and log-rank 
tests for time-to-event outcomes. Overall survival (OS) and progression- 
free survival (PFS) were estimated using the Kaplan–Meier method.

Univariate Cox proportional hazards models were first applied to 
assess the prognostic effect of each of the twelve tumor microRNAs 
(miRNAs) on progression-free survival (PFS) and overall survival (OS). 
To control for multiple testing and preserve the type I error rate, p- 
values were adjusted using the Bonferroni-Holm correction. MiRNAs 
with corrected p-values < 0.05 were subsequently entered into a step
wise multivariate Cox regression to identify an independent prognostic 
signature. The model included minimization factors used in the MAPS 
trial—histology, performance status (PS), and smoking status—as well 
as established clinical prognostic variables (sex, age, hemoglobin level, 
white blood cell count, and platelet count), which were forced into the 
model to estimate the adjusted prognostic impact of the selected 
biomarkers.

To evaluate the predictive value of individual miRNAs for treatment 
effect (pemetrexed-cisplatin with or without bevacizumab), a two-step 
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approach was implemented, as proposed by [16]. First, miRNAs without 
a significant prognostic association with survival—after adjustment for 
treatment arm—were excluded. In the second step, for miRNAs passing 
this screening, interaction terms between treatment arm and miRNA 
expression were tested in multivariate Cox models adjusted for mini
mization variables. Bonferroni-Holm corrections were applied to inter
action p-values.

Model robustness was assessed via bootstrap resampling (1000 it
erations), and optimism-corrected concordance indices (c-index) were 
calculated to evaluate predictive performance. Statistical significance 
was defined as p < 0.05. All analyses were conducted using IBM SPSS 
Statistics, Version 22.0.

Results

Expression of angioMirs in PM patients from MAPS trial

Tumor cell content was insufficient (<70 %) to allow microRNA 
extraction in 240 of the 448 FFPE specimens (53.16 %). In addition, 2 
samples (0.4 %) yielded low-quality RNA, preventing subsequent 
amplification (Fig.S1). For 2 out of the 238 remaining patients, miRNA 
quantification failed due to poor RNA quality. The expression of the 
twelve microRNAs was successfully assayed in 236 out of 448 patients 
(50.8 %). However, the number of successfully analyzed samples was 
lower for specific miRNAs: miR-132–3p (171/448), miR-424–5p (209/ 
448), miR-100–5p (210/448), miR-210–3p (210/448), and miR-200b- 
3p (220/448). The baseline characteristics of the 236 patients with 
successful microRNA amplification (Fig. S1) did not differ significantly 
from those of patients with failed analyses (n = 212, Supplementary 
Table S1), including treatment arm allocation (with or without bev
acizumab), histological subtype (epithelioid vs. non-epithelioid), age, 
performance status (0 vs. 1–2), and key biological prognostic variables 
in mesothelioma (hemoglobin concentration, leukocyte count, platelet 
count).

Establishing a correlation matrix, we found that the expression of the 
studied miRNAs was not correlated with that of angiogenesis markers 
previously analyzed in patient with PM from MAPS trial by immuno
histochemistry, namely: CD34, VEGFR2 [5], VE-statin, IGFR1, YAP/TAZ 
and Amphiregulin (AREG) [17]. However, the expression levels of 
several miRNAs were correlated with each other, including 
miR-15a/miR-126* (0.86), miR-15a/miR-21 (0.93), miR-126/miR-126* 
(0.92), miR-126/miR-15a (0.82), miR-132/miR-15a (0.91), 
miR-424/miR-126* (0.83), miR-424/miR-21 (0.91), miR-424/miR-15a 
(0.96), miR-424/miR-132 (0.90), miR-15b/miR-126* (0.81), 
miR-15b/miR-15a (0.90), miR-15b/miR-424 (0.90), 
miR-193a/miR-193b (0.90), miR-193a/miR-15a (0.90), 
miR-193a/miR-100 (0.81), and miR-193a/miR-424 (0.84) (Fig.S3).

Has-mir-193b-3p has a prognostic value for OS in PM patients from MAPS 
trial

In univariate analyses, we identified three miRs (has-mir-193b-3p, 
− 210–3p and − 21–5p) associated with PM patients OS (Table 1). Haz
ard Ratios, for a 1-point increase of the delta CT, were the following: 
mir-193b-3p: HR = 0.89, 95 %CI [0.84; 0.95], corrected p = 0.0031; 
miR210–3p: HR = 0.90, 95 %CI [0.84; 0.96], corrected p = 0.013; 
miR21–5p: HR = 0.90, 95 %CI [0.84; 0.96], corrected p = 0.0080. 
Survival plots using cut-points at the median value are presented on 
Fig. 1A-C (A: mir-193b-3p, B: miR210–3p, C: miR21–5p).

Only miR 193b-3p remained significant in the stepwise regression 
applied to the 3-miR model. The effect was still highly significant after 
adjustment on the minimization and clinical risk factors: adj. HR = 0.86, 
95 %CI [0.80–0.92], p < 0.001, corrected c-index = 0.66. Median OS 
was 13.5 months 95 %CI (9.3 - 17.6) for patients with mir-193–3b high 
expression (> median value) and 22.3 months 95 %CI (16.5 - 28.0), for 
patients with mir-193–3b low expression.

Bootstrap resampling showed that, in univariate analyses, the same 
three miRNAs (has-mir-193b-3p, − 210–3p and − 21–5p) were the most 
frequently associated to survival (in respectively 81 %, 71 % and 68 % of 
the 1000 bootstrapped samples). After multivariate analysis, mir-193b- 
3p was the most frequently selected miRNA, but in only 42 % of the 
cases. Bootstrap inclusion fractions (BIF) were 21 % for mir-21–5p and 
16 % for mir-210–3p

None of the twelve miRNAs was significantly associated to PM pa
tients PFS in univariate analyses, after Bonferroni-Holm corrections. No 
multivariate model was thus estimated.

Has-miR-132–3p has a predictive value for OS in PM patients from MAPS 
trial

To exclude non-prognostic microRNAs from subsequent predictive 
analyses, in the first step of the analysis, we identified seven microRNAs 
(miR-424, miR-21, miR-193b, miR-210, miR-200c, miR-132, and miR- 
100) that showed a significant association with OS, independently of 
treatment arm (beva+chemo arm as compared with those treated with 
only chemo).

In the first screening step, five microRNAs with poor prognostic 
value were excluded from the analysis: hsa-miR-155–5p, − 200a-3p, 
− 200b-3p, − 29c-5p, and − 141–5p In the second step, among the seven 
remaining biomarkers, only miR-132–3p demonstrated a significant 
predictive value after Bonferroni-Holm correction (Table 2). The vari
ation of the bevacizumab effect, according to mir-132–3p expression, is 
illustrated on Fig. 2: the higher the expression level of miR-132, the 
better the efficacy of the pemetrexed-cisplatin-bevacizumab triplet. 
Indeed, patients with high tumor miR-132 expression (> median value) 
had a median overall survival (OS) of 17.1 months (95 % CI: 8.5–25.8) in 
the bevacizumab arm versus 11.2 months (95 % CI: 8.9–13.6) in the 
chemotherapy-alone arm. Conversely, for patients with low tumor miR- 
132 expression, median OS was 24.6 months (95 % CI: 19.1–30.1) in the 
bevacizumab arm versus 24.7 months (95 % CI: 20.1–29.3) in the 
chemotherapy-alone arm.

Bootstrap resampling indicated that the predictive effect was most 
frequently detected for miR-132–3p, with a significant interaction p- 
value observed in 40 % of 1000 bootstrapped samples. The next bio
markers in the ranking were miR-100–5p (BIF 19 %) and miR-21–5p 
(BIF 18 %). No statistically significant interaction effect was observed 
for PFS.

Discussion

Out of 20 angiogenesis-related microRNAs identified by literature 
curation and databases analysis with altered expression in PM, twelve 
microRNA were retained in the current study following an intermediate 
statistical analysis step to identify candidate miRNAs that would help in 
identifying PM patients likely to specifically benefit from antiangiogenic 

Table 1 
Association of miRNAs with overall survival.

has- n HR* IC95 % p corrected p†

mir–424–5p 209 0.95 (0.91; 0.99) 0.019 0.17
mir–155–5p 236 0.98 (0.94; 1.02) 0.26 0.78
mir–21–5p 236 0.90 (0.84; 0.96) 0.00073 0.0080
mir-193b − 3p 236 0.89 (0.84; 0.95) 0.00026 0.0031
mir-200a − 3p 236 0.99 (0.94; 1.05) 0.83 1
mir-210 − 3p 210 0.90 (0.84; 0.96) 0.0013 0.013
mir-200b − 3p 220 0.96 (0.91; 1.01) 0.12 0.59
mir-29c − 5p 236 1.01 (0.96; 1.07) 0.72 1
mir-200c − 3p 236 0.94 (0.88; 0.99) 0.021 0.17
mir-141 − 5p 236 0.97 (0.94; 1.01) 0.14 0.58
mir-132 − 3p 171 0.93 (0.87; 0.995) 0.037 0.26
mir-100 − 5p 210 0.94 (0.88; 1.00) 0.063 0.38

* For a 1-point increase of the ΔCT (CTmiR - CTRNU48).
† Bonferroni-Holm Method.

G. Levallet et al.                                                                                                                                                                                                                                 Translational Oncology 61 (2025) 102520 

3 



treatment bevacizumab in combination with Cis/pemetrexed.
First, since transcriptional co-regulation is frequently reported for 

multiple miRNAs whose genes are often clustered in common regions of 
the human genome, we investigated whether the expression of some of 
these 12 selected miRNAs could be correlated with each other. We found 
that the expression of the studied miRNAs was not correlated with other 
angiogenic biomarkers analyzed in MAPS [5,17], whereas the expres
sion levels of several miRNAs were correlated with each other. This 
suggests that microRNAs involved in the same biological process—such 
as angiogenesis—have correlated expression profiles, which is consis
tent with the findings of [18]. These authors demonstrated that several 
microRNAs, including miR-221 and other angiogenic miRNAs, are 
co-expressed and correlated during the formation of endothelial tip 
cells, a key process in angiogenesis. These miRNAs act as a network 

jointly regulating shared biological pathways [18].
Although we cannot exclude potential biases due to sample attrition 

in our miR study, which was successfully conducted in only half of the 
initial clinical trial population, we found no evidence of dispropor
tionate sample loss from specific patient subgroups. No statistical dif
ferences were observed between the subsets with or without miR 
analyses in terms of patient characteristics, and both subsets showed 
similar median PFS and OS values (Table S1).

Considering this potential limitation, we found that the expression of 
hsa-miR-193b-3p, − 210–3p, and − 21–5p microRNAs was associated 
with prognosis in pleural mesothelioma patients from the MAPS trial 
(both treatment arms combined), using stratified univariate Cox models. 
However, only one miRNA, hsa-miR-193b-3p, retained a prognostic ef
fect in the multivariate model that included all classical clinical and 
pathological prognostic variables as well as stratification factors, after 
Bonferroni correction for multiple testing and bootstrap validation. 
There are few data in the literature regarding the pathophysiological 
roles of hsa-miR-193b-3p, but the available evidence suggests it may act 
as a tumor suppressor in ovarian cancer, lung cancer, and leukemia 
[19–22]. Thus, the finding that low expression of hsa-miR-193b-3p is 
associated with longer survival in PM patients in our study initially 
appeared surprising. However, other studies have also suggested that 
hsa-miR-193b-3p may have a controversial and/or histology-dependent 
role. In colorectal cancer, for example, hsa-miR-193b-3p has been 
shown to act as an oncomiRNA rather than exhibiting tumor-suppressive 
properties [23]. hsa-miR-193b-3p can suppress cell proliferation, in
flammatory cytokine secretion, and the STAT3 [24–25] and NF-κB 
signaling pathways [26–28]. In pleural mesothelioma, the NF-κB 

Fig. 1. Overall survival for the 236 patients with PM in the ’MAPS’, NCT00651456 phase 3 trial, according to microRNA expression (A: has-miR-193b-3p, 
B: has-miR-210–3p, C: has-miR-21–5p). Survival plots using cut-point at the median value. p*: Bonferroni-Holm corrected p-value for the continuous predictor in 
the Cox model.

Table 2 
Interaction effect of miRNAs on overall survival.

has- n p* corrected p†

mir–424–5p 209 0.13 0.50
mir–21–5p 236 0.10 0.50
mir-193b − 3p 236 0.48 0.95
mir-210 − 3p 210 0.71 0.95
mir-200c − 3p 236 0.10 0.50
mir-132 − 3p 171 0.0043 0.030
mir-100 − 5p 210 0.036 0.21

* Interaction between treatment arm and miRNA expression in a Cox model 
adjusting for the minimization factors.

† Bonferroni-Holm Method.
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pathway is known to promote the survival of mesothelial cells [29,30]. 
Other data that which may help reconcile our findings suggesting a 
potential oncogenic role for hsa-miR-193b-3p in PM show that 
miR-193b induces EMT change and migration ability through the 
regulation of TGFβ2 expression in A549 cells [31]. In addition, 
miR193b-3p high expression has also been associated with lower cancer 
cell differentiation, higher TNM stage and lymph node metastases in 
non-small cell lung cancer, by targeting TP53 pathway, cell-cell adhe
sion, cytoskeleton remodeling or autophagy (AKT3, IGF-1R), under
lining the complex role of such miR [32]. However, further investigation 
is required to draw a definitive conclusion.

We report that seven microRNAs may have predictive value for 
overall survival (OS) in patients specifically treated with a bevacizumab- 
based triplet, compared to those receiving chemotherapy alone, as 
shown by univariate Cox models with interaction tests. Among them, 
only one microRNA, miR-132–3p, retained its predictive value in the 
multivariate analysis after Bonferroni correction. It is known that the 
power of interaction tests, performed as a secondary objective in a 
randomized trial, is significantly reduced compared to the power 
defined for the overall effect. This reduction is further amplified, in our 
study, by the application of Bonferroni corrections. We therefore cannot 
exclude that the power was not sufficient to detect the predictive effect 
of other miRNAs.

MiR-132–3p is known to have pleiotropic targets [33,34]. The pre
dictive impact observed in our study may be explained by the role of 
miR-132–3p in targeting the VEGF pathway. Indeed, in endothelial cells 
and pericytes, miR-132–3p is involved in a VEGF signaling loop induced 
by hypoxia [35], and it also regulates microvessel density and cell 
proliferation [36]. However, other microRNAs targeting the VEGF 
pathway did not show any independent predictive effect. Furthermore, 
we previously reported that neither plasma VEGF levels [3], nor 
VEGFR2 immunostaining, nor the CD34 endothelial cell marker 
demonstrated any predictive value in MAPS patients [5]. A speculative 
explanation could be that miR-132–3p exerts a unique effect on vascular 
tubulogenesis and vessel density regulation [35], which may not be 
influenced by other microRNAs. Experimental data are currently awai
ted to support this hypothesis.

The predictive value of miR-132–3p expression should be validated 
in an independent cohort of randomized patients comparing bev
acizumab (or another anti-angiogenic agent) with a control arm. Such 
findings would warrant experimental studies using an antagomiR to 
knock down miR-132–3p, thereby disrupting the VEGF/VEGFR2 auto
crine loop in PM cells.

Given the current paradigm shift in treatment toward immune 
checkpoint inhibitors (ICIs), both in the second-line setting [37] and 
increasingly in first-line treatment [38], miR-132–3p expression also 
merits investigation in cohorts of patients treated with ICIs, with or 
without bevacizumab—such as in the ETOP BEAT‑meso trial [39]. 
Although the BEAT‑meso trial yielded negative statistical results, the 
experimental arm combining atezolizumab and bevacizumab demon
strated numerically longer survival than the control arm. It is worth 
exploring whether imbalances in miR-132–3p expression might have 
masked the overall survival benefit of the ICI–bevacizumab combina
tion. This question is especially relevant in light of the development of 
bispecific antibodies targeting both PD-1 and VEGF, such as ivonesci
mab. Additionally, miR-132–3p expression should be studied in patient 
cohorts from trials comparing immune checkpoint inhibitor (ICI) com
binations—such as the CheckMate-743 trial [38] (dual ICI) and the 
IND-227 trial [40] (ICI plus chemotherapy)—against chemotherapy 
alone. This is particularly important because VEGF pathway regulation 
is known to influence immune responses, not only by modulating 
vascular permeability to immune cells [41,42], but also by promoting an 
immunosuppressive tumor microenvironment [43,44]. Notably, 
miR-132–3p regulates the expression of HB-EGF, a cytokine produced by 
monocytes and macrophages that may play a role in immune response 
and cancer progression [45]. Furthermore, another miR-132–3p target, 
the SOX4 transcription factor, has been implicated in T-cell differenti
ation and immune evasion [46]. Collectively, these considerations un
derscore the need for further studies of miR-132–3p expression in 
patients with pleural mesothelioma treated with ICIs and VEGF in
hibitors. Relevantly, it is well established that miRNAs can modulate the 
response to ICIs by regulating key immune pathways involved in tumor 
immune evasion and response [47,48]. Moreover, miRNAs have the 
advantage of being measurable in blood, offering a minimally invasive 

Fig. 2. Variation of the bevacizumab effect on OS according to DeltaCT has-mir-132–3p.
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means to monitor patients during therapy [49]. Importantly, circulating 
miRNAs often reflect the molecular characteristics of the tumor cells 
that produce them, thereby serving as potential real-time surrogates of 
tumor biology and therapeutic response [50].
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