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MST1/Hippo promoter gene methylation predicts poor
survival in patients with malignant pleural mesothelioma
in the IFCT-GFPC-0701 MAPS Phase 3 trial
Elodie Maille1,2, Solenn Brosseau3, Vincent Hanoux4, Christian Creveuil5, Claire Danel6, Emmanuel Bergot2,7, Arnaud Scherpereel8,
Julien Mazières9, Jacques Margery10, Laurent Greillier11,12, Clarisse Audigier-Valette13, Denis Moro-Sibilot14, Olivier Molinier15,
Romain Corre16, Isabelle Monnet17, Valérie Gounant18, Alexandra Langlais19, Franck Morin19, Guénaëlle Levallet 2,20 and
Gérard Zalcman3,21

BACKGROUND: The Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS/NCT00651456) phase 3 trial demonstrated the
superiority of bevacizumab plus pemetrexed–cisplatin triplet over chemotherapy alone in 448 malignant pleural mesothelioma
(MPM) patients. Here, we evaluated the prognostic role of Hippo pathway gene promoter methylation.
METHODS: Promoter methylations were assayed using methylation-specific polymerase chain reaction in samples from 223 MAPS
patients, evaluating their prognostic value for overall survival (OS) and disease-free survival in univariate and multivariate analyses.
MST1 inactivation effects on invasion, soft agar growth, apoptosis, proliferation, and YAP/TAZ activation were investigated in
human mesothelial cell lines.
RESULTS: STK4 (MST1) gene promoter methylation was detected in 19/223 patients tested (8.5%), predicting poorer OS in
univariate and multivariate analyses (adjusted HR: 1.78, 95% CI (1.09–2.93), p= 0.022). Internal validation by bootstrap resampling
supported this prognostic impact. MST1 inactivation reduced cellular basal apoptotic activity while increasing proliferation,
invasion, and soft agar or in suspension growth, resulting in nuclear YAP accumulation, yet TAZ cytoplasmic retention in
mesothelial cell lines. YAP silencing decreased invasion of MST1-depleted mesothelial cell lines.
CONCLUSIONS: MST1/hippo kinase expression loss is predictive of poor prognosis in MPM patients, leading to nuclear YAP
accumulation and electing YAP as a putative target for therapeutic intervention in human MPM.
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BACKGROUND
Malignant pleural mesothelioma (MPM) is a rare yet aggressive
cancer with poor prognosis mainly caused by occupational
asbestos exposure.1 Recently, the Mesothelioma Avastin Cisplatin
Pemetrexed Study (MAPS) demonstrated the benefit of bevacizu-
mab plus cisplatin/pemetrexed doublet combination on both
overall (OS) and progression-free survival (PFS) in 448 MPM
patients.2 Following this trial, a biological study (Bio-MAPS) is
currently evaluating new biomarkers, including the Hippo
mammalian sterile 20-like kinase (MST1), as MPM has recently
been proven to harbour frequent Hippo pathway alterations.3

MST1 (also named STK4), encoded by the human orthologue of
the Drosophila melanogaster Hippo gene, and MST2 (STK3) are
the best characterised of the five MST kinases (MST1/2/3/4
and YSK1) existing in mammals. MST1/2 primary function is to
activate/phosphorylate the large tumour suppressor homologue
1/2 (LATS1/2) kinases, which in turn regulate the Yes-associated
protein (YAP) and transcriptional co-activator with PDZ-binding
motif (TAZ) activities. Inactive/phosphorylated YAP/TAZ are
sequestered in the cytoplasm by proteins such as 14.3.3 or beta-
catenin, while active/dephosphorylated YAP/TAZ interact with
numerous transcription factors and cause transcription of genes
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involved in cell motility, growth, proliferation, and apoptosis.4

Thus, MST1 or MST2 loss results in hyperproliferation and
tumourigenesis, commonly negated by YAP inactivation.5 MST1/
2 kinases were also reported as contributing to the regulation of (i)
apoptosis by establishing a complex with RASSF1A and CNK1
proteins6,7 or with the apoptosis-inhibiting protein kinase CK2,8 (ii)
cell-cycle progression by catalysing the mitotic phosphorylation of
MOBKL1A/1B,9–13 and (iii) migration/invasion processes by stabi-
lising lamellipodial F-actin.14–16

Several studies suggest that Hippo signalling pathway dereg-
ulation is involved in pleural carcinogenesis, since the RASSF1A
tumour suppressor gene, an upstream negative regulator of the
pathway, is frequently methylated and inactivated in MPM.17,18 In
our study, we first established a correlation between MST1 kinase
gene promoter methylation and reduced OS in MPM patients. By
transfecting cells with RNAi-MST1, we further reported that MST1
inactivation increases proliferation, invasion, and cell colony
formation of MPM cell lines while decreasing their basal apoptotic
activity. Finally, we demonstrated that the effect of MST1
expression loss depends on inappropriate activation of YAP.

METHODS
Patients from the MAPS trial
From 13 February 2008 to 5 January 2014, 448 patients were
randomly assigned to one of two treatments (223 (50%) to
pemetrexed plus cisplatin and bevacizumab and 225 (50%) to
pemetrexed plus cisplatin). Specific informed consent was
obtained for the biological studies (Bio-MAPS), and the trial was
approved by the appropriate ethics committee (CPP Ref 2007-20
Nord-Ouest III, France).

DNA extraction and methylation-specific PCR assay
DNA samples from MPM were obtained from paraffin-embedded
tumour tissue using the QIAamp DNA FFPE Tissue kit (Qiagen).
Genomic DNA bisulphite modification was performed using the
Epitect kit (Qiagen), according to the manufacturer’s instructions
and as previously described.19 Polymerase chain reaction (PCR)
was conducted with specific primers for either the methylated or
unmethylated alleles (Table S1) in standard conditions for the
following genes encoding proteins of the Hippo pathway or RASSF
superfamily: RASSF1A, RASSF2A, RASSF5, RASSF10, MST1 (Fig-
ure S1), MST2, LATS1, and LATS2. RASSF6 methylation status was
determined by the COBRA technique, as previously described.20

Cell culture and transfection
Human MPM cell lines MSTO-211H, NCI-H2452, NCI-H28, and NCI-
H2452 from the American Tissue Culture Collection (ATCC) were
maintained in RPMI-1640 medium supplemented with 10% fetal
bovine serum, 10mM L-glutamine and streptavidin/penicillin, and
kanamycin (100 µg/ml). Cells were transfected using JetPRIME®

(Polyplus-transfection®) with small-interfering ribonucleic acid
(siRNA) or plasmid DNA, as listed in Table S2.

Reverse transcription-quantitative real-time PCR
After RNA extraction, reverse transcription-quantitative real-time
PCR (RT-qPCR) was performed with primer sets (Table S3) as
previously described.21 RT-qPCR data were normalised to the
human glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Relative quantification was calculated using the delta-delta-Ct
method.

Immunoblotting
Whole-cell protein extracts were prepared as previously
described,22 and proteins were detected by immunoblotting
with the primary antibody from cell signalling (E-Cadherin, MST1,
YAP/TAZ, P-Ser127YAP, GAPDH, vimentin), diluted to 1:1000 in
Tween (0.1%)–tris-buffered saline buffer and horseradish

peroxidase-conjugated secondary antibody, and then revealed
by enhanced chemiluminescence using the ECL kit (Promega™).
Densitometry results of western blot were analysed with ImageJ
software. The signal intensity of each band was normalised with
GAPDH densitometry values.

Immunofluorescence and image analysis
Transfected cells were fixed and permeabilised as previously
described.20 The primary antibodies were YAP (Cell Signaling,
1/150), TAZ (Cell Signaling, 1/150), alpha-tubulin (Sigma Aldrich,
1/300), actin (Cell Signaling, 1/300), Fascin (Cell Signaling, 1/300)
or cytochrome C (BD Biosciences, 1/50). The AlexaFluo633,
AlexaFluo555 or 488-labelled (Invitrogen™) secondary antibodies
were added for 1 h. Coverslips were mounted with 4′,6-diamidino-
2-phenylindole (DAPI; Santa CruzTM) and images captured
using high-throughput confocal microscopy (FluoView FV1000,
Olympus™).

Quantification and measure of cell cytoplasmic extensions
After immunolabeling tubulin filaments, number and length of
cytoplasmic extensions from almost 200 cells were assayed from
10 images captured randomly at 20× objective with a high-
throughput confocal microscopy (FluoView FV1000, Olympus™)
using ImageJ software (version 1.50d).

Invasion
A total of 15 × 103 cells were added in serum-free medium to the
top invasion chambers of 24-well transwell plates containing cell
culture insert with 8 μm pores (BD BioCoat Matrigel® Invasion
Chamber, BD Biosciences™). Complete media supplemented with
hepatocyte growth factor were added to the bottom chambers.
Cells were incubated for 48 h and then removed; migrating
(bottom) cells were stained with crystal violet.

Soft agar assay
Base agar matrix (100 µl, Cell Biolabs) was seeded in a 96-well
plate and 1500 cells/well layered on agar followed by 50 µl of 2×
complete medium. After 25 days, colonies were stained and
counted for each well.

Spheroid culture
At 24 h post transfection, cells were reseeded with complete
medium in 24-well plates without adhesion (Nunclon™ Sphera™
Microplates, Thermo Fisher Scientific). Sphere formation was
evaluated on day 6 at ×10 magnification with a phase-contrast
inverted microscope.

Apoptosis measurement
DNA fragmentation and Caspase 3/7 activation were assayed using
the Cell Death Detection ELISA plus kit (Roche, USA) and the
Caspase-Glo 3/7 Luminescence Assay (Promega Corp. Madison, WI,
USA), respectively, according to the manufacturer’s instructions.

Bromodeoxyuridine incorporation
Cells were transfected, left for 24 h, then labelled with bromo-
deoxyuridine (BrdU) (1:500 dilution, cell proliferation assay,
Millipore) for a further 24 or 48 h. BrdU incorporation was
measured according to the manufacturer’s instructions.

Statistical analysis
The Bio-MAPS study was a pre-planned ancillary and exploratory
study. The characteristics of patients with promoter methylation
analysis were compared to those without using chi-squared tests
or Fisher’s exact tests for qualitative variables, and Student’s t-tests
or Mann–Whitney tests for quantitative variables.
The prognosis value of MST1 promoter hypermethylation was

assessed for PFS and OS using univariate and multivariate Cox
models. Cofactors introduced to the multivariate model were:
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treatment arm, stratification factors used in the MAPS trial
(histology, performance status (PS), and smoking status), and
clinical factors known to be associated with survival (gender, age,
sex, haemoglobin, white blood cells, and platelets).
Hazard ratios (HRs) were estimated with their 95% confidence

intervals (95% CIs). Bootstrap resampling was used to assess the
model’s stability and the optimism-corrected concordance index (c-
index). The data were analysed with IBM SPSS software Version 22.0.
In vitro data are presented as means ± SEM; each experiment

was performed at least three times independently. Statistical
differences were determined either by one-way analysis of
variance (ANOVA) or Dunnett’s multiple comparison test to
compare each experiment’s condition with siMST1 (GraphPad
Software, Inc. USA). Statistical significance was set at p ≤ 0.05.

RESULTS
MST1 promoter hypermethylation predicts shorter OS of MPM
patients
Assessing the baseline characteristics of patients from the MAPS
trial reveals that biological parameters (haemoglobin, platelet
count, leucocyte count), general status (PS 0–1 versus >2), and
histology (epithelioid vs. sarcomatoid/mixed) are potent prog-
nostic factors of OS (p < 0.05) and PFS in univariate and
multivariate analyses (2) in this subset of MAPS patients. The
baseline characteristics of the 223 patients in whom gene
methylation assays were performed did not differ from those of
patients for whom such analyses were not possible (Table S4).
RASSF1A, RASSF2A, RASSF6, and RASSF10 were found to be
methylated in 11.1%, 14.5%, 21.5%, and 4.4% of samples,
respectively, while no sample exhibited any RASSF5, MST2, LATS1,
or LATS2 methylation. None of these methylations influenced
survival in univariate analysis (data not shown).
MST1 promoter methylation status was available for 223/448

patients from MAPS (Fig. 1a), and MST1 promoter was methylated
in 19/223 samples (8.5%) (representative methylation-specific PCR
(MS-PCR) are shown in Figure S1).
In univariate analysis, the median OS of patients with

methylated MST1 promoter was 1.4 times lower than that of
patients with unmethylated MST1 promoter (13.0 versus
19.3 months, HR: 2.40, 95% CI (1.48–3.90), p < 0.001) (Fig. 1b).
Moreover, univariate analyses showed that methylation of MST1
gene predicted worse survival in each treatment group separately,
with HR= 2.29 (95% CI 1.13–4.65), p= 0.021 for the chemotherapy
arm and 2.50 (95% CI 1.27–4.90), p= 0.0079 for the bevacizumab
arm (Figure S2).
This result was confirmed in multivariate analysis in the whole

series, both treatment arms analysed together (adjusted HR: 1.78,
95% CI (1.09–2.93), p= 0.022, adjustment for gender, age,
histology, PS, haemoglobin, leucocyte and platelet counts,
smoking, and treatment arm) (Fig. 1b), and validated by a
bootstrap procedure: MST1 methylation was significantly asso-
ciated with worse OS in 59% of 1000 bootstrapped samples, with
an optimism corrected c-index of 0.67.
When the multivariate analysis was performed separately in the

two treatment arms, the survival impact only remained significant
in the bevacizumab arm (HR: 2.37, (95% CI (1.16–4.83), p= 0.017).
However, an adjusted interaction test did not support MST gene
methylation predictive value, with adj. HR: 1.44 (95% CI 0.71–2.93),
p= 0.38 (Figure S2).
Finally, MST1 inactivation did not significantly predict PFS for

MPM patients, although there was a correlating trend of a
deleterious impact (HR: 1.53, 95% CI (0.95–2.46), p= 0.082 in
univariate analysis).

MST1 depletion modifies human mesothelial cell stretching
Since MST1 methylation status was the only alteration found to
significantly influence prognosis in our large series of MPM

patients, we focussed our functional mesothelial cell studies on
this protein’s role.
MST1 was silenced in four human mesothelial cell lines (MSTO-

211H, H2452, H28, and H2452) with normal basal MST1 expression
(as evidenced by MS-PCR and qRT-PCR, data not shown), using
siRNA-MST1. After testing several small interfering RNA (siRNA)
sequences, we retained two that decreased both MST1 mRNA and
protein expression by at least 40% in MPM cells (Fig. 2a, b, S3A). To
validate the specificity of the effects observed in the absence of
MST1, we have also introduced an experimental condition in
which the cells are transfected with both a siMST1 and a plasmid
carrying the coding sequence of MST1. The plasmid was brought
at a concentration determined to overcome the amount of siRNA
silencing the endogenous MST1 (Fig. 2a, b, S3A).

a

HR = 2.40 [1.48–3.90], p< 0.001
Adj HR = 1.78 [1.09 – 2.93], p= 0.022
(Adjustment for sex, age, histology, PS, haemoglobin, white 
blood cells, platelet, tabaco and arms)

b

448 randomised

245 patients with available 
paraffin-embedded specimens

223 paraffin-embedded 
specimens not available

22 paraffin-embedded 
specimens without tumour cells

223 patients with MST1 
promoter methylation assay

23 MS-PCR failures

203 patients with MST1 
promoter methylation 
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Fig. 2 MST1 depletion causes morphological changes. a–d MST0-211H and H2452 cells were transfected with siNeg, siMST1, or
siMST1+pcDNAMST1, analysed 48 h after transfection. Expression of MST1 was analysed by reverse transcription-quantitative real-time PCR
(RT-qPCR) (a) and western blot (b), using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control. Quantification of number of
cytoplasmic extensions and their size (µm) after α-Tubulin staining (c) and quantification of Fascin expression (d) by immunofluorescence and
confocal microscopy in almost 200 cells using ImageJ software. Representative confocal pictures (c, d) are presented for cells stained for α-Tubulin
(red), Fascin (green), and nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI). For all histograms, error bars indicate the SEM of at least three
independent experiments; *p < 0.05, **p < 0.01, and ***p < 0.001, using an analysis of variance (ANOVA) test followed by Dunnett’s test
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As evidenced by alpha-tubulin immunostaining, MST1-depleted
cells were much more “stretched” than cells transfected with a
control siRNA (siNeg). The shape of MSTO-211H or H2452 cells
(Fig. 2c) (as H2052 and H28, data not shown) appeared
significantly modified, and MST1 knockdown cells exhibited more
cytoplasmic extensions than mock-transfected cells. Epithelial
(E-cadherin) and mesenchymal (vimentin) marker quantification
revealed that the morphological changes induced by MST1 loss
were not caused by an epithelial–mesenchymal transition, since
we found no typical expression switch between epithelial and
mesenchymal markers (data not shown).
Cytoplasmic expansions from MST1-depleted cells were shown

to be actual filopodia, as confirmed by the fascin enrichment in
these structures (Fig. 2d), thus suggesting an increased ability for
cell migration upon MST1 knockdown.

MST1 loss increases invasion and growth in agar of MPM cells
We observed that MST1 depletion significantly increased the
ability of MSTO-211H, H2452 (Fig. 3a), H28, and H2052 (Figure S3B)
cells to invade Matrigel®. Moreover, colony formation on soft agar
was increased by MST1 depletion in MSTO-211H, H2452 (Fig. 3b),
H28, and H2052 (Figure S3C).
Finally, by impeding substrate-cell attachment, we caused

spheroid formation increase in MSTO-211H and H2452 cells in
absence of the MST1 kinase (Fig. 3c). For MST1-depleted MSTO-
211H cells, we also observed that the cells were more individua-
lised than control cells, which necessarily group into cell clumps.

MST1 depletion decreases basal apoptosis and increases
proliferation of MPM cells
MSTO-211H and H2452 cell lines transfected with siMST1
presented significantly reduced DNA fragmentation (Fig. 4a),
suggesting decreased apoptosis. This result was consistent with
the decreased caspase 3/7 activity also measured in the absence
of MST1 in the MSTO-211H and H2452 cells (Fig. 4b), as in H28 and
H2052 cells (Figure S3D), and the lower intensity of cytochrome C
staining quantified in MSTO-211H and H2452 cells (Fig. 4c), all
assays exploring apoptosis ability.
This basal apoptotic activity decrease in MST1-depleted cells

was accompanied by increased cell proliferation for MSTO-211H
and H2452 cells (Fig. 4d), or H28 and H2052 cells (Figure S3E), as
measured by BrDU incorporation.

MST1 loss leads to nuclear YAP accumulation but TAZ cytoplasmic
retention
MST kinases are known to activate LATS kinases,4 which in turn are
able to phosphorylate YAP, inducing either YAP cytoplasmic
sequestration or YAP proteasome degradation.4 It should be noted
that in MSTO-211H cells, cells with LATS1 kinase inactivation,23 the
Hippo pathway remains functional as demonstrated by the
increase of phosphorylation on the serine 127 of YAP with
increasing cell density (Figure S4A) and the concomitant decrease
in intensity of nuclear YAP (Figure S4B), LATS1 inactivation being
probably compensated by another NDR kinases.
By using immunocytochemistry, we actually found that MST1

depletion led to nuclear YAP accumulation, suggesting a decrease
in YAP phosphorylation. Conversely, using specific TAZ antibodies,
we observed a decrease in nuclear TAZ, a YAP close homologue, in
MSTO-211H and H2452 mesothelial cells (Fig. 5a).
We evaluated YAP/TAZ transcriptional activity by quantifying

the expression of YAP/TAZ target genes: CTGF, ANKDR1, and Cyr61.
CTGF expression did not significantly vary upon MST1 depletion
(data not shown), while ANKDR1 and Cyr61 expression actually
significantly increased by 1.6- to 2.5-fold, as shown in H2452
(Fig. 5b) and H2052 cells (Fig. 5c).
Western blot analyses further confirmed that YAP protein was

more expressed in MST1-depleted MPM cell lines, while TAZ
protein was less expressed. Furthermore, YAP protein should

accumulate under its active form as evidenced by the
P-Ser127YAP decrease detected in these cells, this form being
reputed to be inactive (Fig. 5d).
We next evaluated apoptosis activity, invasion, and colony

formation of MPM cell lines in the absence of either YAP or TAZ
(Fig. 6, Figure S5). We found that YAP and TAZ extinction actually
decreased MPM cell invasion (Fig. 6a, Figure S5,A) and colony
numbers (Fig. 6b, Figure S5,B), and increased caspase 3/7 activity
(Fig. 6c, Figure S5,C). Thus, the aggressive cell phenotype induced
by MST1 loss could result from YAP cytoplasmic-to-nuclear shuttle
and TAZ cytoplasmic retention. By silencing YAP in MST1-depleted
MSTO-211H or H2452 cells, in line with such hypothesis, we were
finally able to decrease their invasion through Matrigel® (Fig. 6d).

DISCUSSION
Today, there is still no oncogenic “driver” identified in MPM
enabling targeted therapeutics to be developed.24 To identify
such a putative driver, the Bio-MAPS study set out to characterise
the molecular abnormalities in tumours from patients enroled in
the MAPS phase 3 trial. Focusing on Hippo pathway alterations,
we assayed MST1 gene promoter hypermethylation, for the first
time to our best knowledge, in a subset (8.5%) of MPM patients.
MST1 promoter hypermethylation had been previously described
in not only other cancers such as sarcoma18 and head and neck
squamous cell carcinomas,25 but also in non-cancer diseases like
autoimmune pancreatitis and rheumatoid arthritis.26 While MST1
inactivation had not previously been evidenced in MPM, our
findings are in line with the reports of frequent genetic alterations
of Hippo pathway members recently revealed in MPM23 and
support the concept that Hippo pathway alterations are key
events in pleural carcinogenesis.23,27,28

Interestingly, our study further revealed that the hypermethyla-
tion of MST1 promoter is associated with significantly worse OS for
MPM patients, which is consistent with its tumour suppressor
function and biomarker potential status. Our findings are
consistent with those already reported in the literature for other
cancers, such as breast cancer,29 hepatocellular carcinoma,30 and
colorectal cancer.31

By mimicking MST1 loss in mesothelioma cell lines via MST1
RNA interference (RNAi) transfection, we demonstrated that
MST1 prevented nuclear YAP accumulation while permitting TAZ
cytoplasmic retention in mesothelial cells, thus inhibiting cell
motility, growth without anchorage, and proliferation, while
controlling basal apoptosis. These results are consistent with data
from the literature, where MST1 role in invasion, migration,
apoptosis, and cell proliferation has already been documented in
various cancer models,15,16,32–35 though not yet in MPM. More-
over, MST1 or MST2 loss is known to lead to hyperproliferation
and tumourigenesis, which are commonly prevented by con-
current YAP inactivation.5 Conversely, MST1 overexpression
induces apoptosis, inhibits proliferation and tumour growth,
and leads to YAP phosphorylation on Ser127 (thus YAP
inactivation), subsequently provoking CTGF, AREG, and survivin
(YAP-target genes) downregulation in hepatocellular carci-
noma36 and non-small cell lung cancer.37 In line with such
reports, our study found that the nuclear YAP accumulation
induced by MST1 depletion is consistent with a P-Ser127YAP
decrease in MST1-depleted cells with ANKDR1 and Cyr61 gene
transcription increase, supporting the fact that YAP accumulated
under its active form in the nucleus. We also revealed that YAP
inactivation in MST1-depleted cells was able to fully reverse their
ability to invade Matrigel®. The increase in nuclear YAP in the
absence of MST1 could explain the poorer OS in patients with
MPM and the more “aggressive” phenotype of mesothelial cells
at the cellular level. That loss of MST1 expression involving YAP
has already been reported in the literature,34 as has the
involvement of YAP in the tumour progression of MPM, yet our
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study was the first to identify Hippo kinase inactivation leading
to YAP deregulation.
YAP has been evidenced as a potential therapeutic target in

MPM patients.25,38,39 In line with our results, another team recently
reported that YAP inactivation in the MSTO-211H cells, which

contain an inactive kinase-truncated LATS1 fusion protein and
thus a constitutively nuclear active YAP by wild-type LATS1 kinase
overexpression leading to YAP phosphorylation, was able to
restore YAP to its cytoplasmic location, consisting of a surrogate
marker for its functional inactivation . In such YAP-inactivated
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MSTO-211H cells, adherent or anchorage-independent cell growth
was suppressed, as was colony formation. Similarly, another team
recently experimented with H2452 cells with wild-type LATS1,
using YAP RNAi-mediated knockdown, demonstrating that such
YAP depletion also inhibited the growth of H2452 mesothelial
cells and significantly suppressed Hippo pathway transcriptional
activity, with decreased invasion, tumorosphere formation, and
impaired stem cell self-renewal capacity.38 These data, along with
our own findings, support the putative therapeutic potential of
YAP inhibition in MPM.
Routinely performing MST1 methylation assay could thus help

identify a subset of patients with poorer prognosis who could
derive benefit from therapies targeting YAP, for instance by
impairing the interaction of YAP with its transcriptional partners
(e.g., TEAD 1–4 proteins). Our results, obtained in this homo-
geneous large series of MPM patients, all treated in a large phase 3
trial, confirm that targeting YAP in MPM represents a new and
attractive therapeutic intervention in this disease, by targeting the
actual features of MPM aggressiveness, responsible for unsatisfac-
tory survival even under modern triplet regimens such as that
used in the experimental arm of the MAPS trial, associating
chemotherapy with the anti-angiogenesis drug bevacizumab.
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