Ultrasonensitive detection of EGFR T790M mutation by droplet digital PCR (ddPCR) in TKI naïve NSCLC harboring EGFR mutation: results of the nationwide program Biomarkers France of the Cooperative Thoracic Intergroup (IFCT)

Charlotte Leduc1, Erwan Penecheaud2, Jean-Pierre Merlio3, Pierre-Paul Bringuier4, F. de Fraipont, F. Escande5, Antoinette Lemoine6, Oualif L’Houcine7, Hélène Blons8, Marc Denis11, Paul Hofman13, Roger Lacave12, Samia Melabali13, Alexandra Langlais13, Pascale Missiy13, Franck Morin14, Fabrice Barlesi9, Denis Moro-Silbert15, Jacques Cadranell17 & Michèle Beau-Faller2

1 Chest Department, CHU Strasbourg, FR, Laboratory of Biochemistry and Molecular Biology, CHU Strasbourg, FR, Department of Biology and Pathology, CHU Boucabe, FR, Laboratoire d’Anatomopathologie Pathologique, CHU Lyon, FR, Biochimie des Cancers et Biopathologies, CHU Grenoble, FR, Laboratoire de Biochimie et Biologie moléculaire, CHU Lille, FR, Biochimie et Oncogénétique INSERM UMR-S 1193, Hôpital Paul Brousse –Hôpitaux Universitaires Paris-Sud, Villejuif, FR, Service de Transplant d’Organes Biologique, APHP, Marseille, FR, 3rd Department of Biochemistry, Pharmacogenetics and Molecular Oncology, HUGO, FR, 4th Molecular Biology, CHU Nantes, FR, 5th Laboratoire d’Anatomopathologie Pathologique, CHU Bordeaux, FR, 6th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Nantes, FR, 7th Hôpitaux Universitaires de Paris, Villejuif, FR, 8th Laboratoire d’Anatomie Pathologique, Institut Curie, FR, 9th French Cooperative Thoracic Intergroup, Paris, FR, Pathology Department of Biology and Pathology, CHU Bordeaux, FR, 10th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Nantes, FR, 11th Hôpitaux Universitaires de Paris, Villejuif, FR, 12th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Bordeaux, FR, 13th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Nantes, FR, 14th Hôpitaux Universitaires de Paris, Villejuif, FR, 15th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Bordeaux, FR, 16th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Nantes, FR, 17th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Bordeaux, FR, 18th Laboratoire de Pharmacologie Moléculaire et Pharmacodynamie, CHU Nantes, FR, 19th Hôpitaux Universitaires de Paris, Villejuif, FR.

Background

The presence of EGFR T790M mutation accounts for > 50% of the acquired resistance to EGFR-TKIs. Earlier studies performed in small cohorts suggest that T790M was also detected in TKI naïve NSCLC, with discordant results.

Methods

We re-analyzed 366 EGFR mutated patients of the IFCT Biomarkers France program (1/2) with available tumor DNA that were finally treated by EGFR-TKIs. ddPCR was performed with QX200 system (BIORAD, Hercules, USA). We used restriction enzyme (Hae III) to improve ddPCR profiles for FFPE DNA analysis. All samples were tested in duplicate (in two independent wells). A cohort of FFPE colon cancer DNA (n=30) was used as negative controls. Theoretical limit of detection was 0.005% and analytical sensitivity was 0.03%. Discordant replicates and false positive results were excluded.

Conclusions

Ultrasonensitive detection of EGFR T790M mutation is related in 9% of EGFR mutated TKI naïve NSCLC patients and has a negative prognostic value for T790M mutation FA over 10%, but no impact on EGFR-TKI response. New strategies of therapies assessed therapies could be tested in such populations.

Background

The frequency of pre-treatment T790M mutation: 23/26% (9).

Methods

Results

Conclusions

Acknowledgements: all patients, clinicians and biologists of the Biomarkers France project.

Disclosure: none

Funding: IFCT, AstraZeneca. Funding sources had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results.

Table 1: Patients’ characteristics (n=233)

<table>
<thead>
<tr>
<th>T790M status</th>
<th>Slow progression</th>
<th>Classical progression</th>
<th>Rapid progression</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T790M negative</td>
<td>37 (21.3%)</td>
<td>108 (62.1%)</td>
<td>29 (16.7%)</td>
<td>0.02</td>
</tr>
<tr>
<td>T790M positive</td>
<td>3 (15.0%)</td>
<td>8 (40.0%)</td>
<td>8 (45.0%)</td>
<td></td>
</tr>
</tbody>
</table>

FA

0	37 (21.3%)	108 (62.1%)	29 (16.7%)	0.007
0.01-0.1%	0	3 (60.0%)	1 (20.0%)	
0.1-1%	0	3 (70.0%)	1 (20.0%)	
1-10%	0	3 (42.9%)	1 (20.0%)	
≥ 10%	0	1 (25.0%)	1 (20.0%)	

Table 2: Correlation between T790M mutation fractional abundance (FA) and time of progression (n=194)

- Slow progression: PFS ≤ 3 months; classical progression: PFS 3-6 months; rapid progression: PFS > 6 months

Figure 1: median overall survival (OS) and progression-free survival (PFS) according to T790M mutation status.

Figure 2: 2D representation of a T790M mutation positive case.

Figure 3: repartition of T790M mutation FA.

In multivariate analysis, OS was associated with the presence of a pre-treatment T790M mutation with FA between 1-10% (HR 3.5; CI 0.96-6.5, p = 0.04) or FA ≥ 10% (HR 16; 5.95 CI 4.7, p < 0.0001); PFS was associated with the presence of a pre-treatment T790M mutation only with FA ≥ 10% (HR 21; 5.95 CI 5.5, p = 0.001).

Acknowledgments: all patients, clinicians and biologists of the Biomarkers France project.

Disclosures: none

Funding: IFCT, AstraZeneca. Funding sources had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results.

Notes:

Table 1: Patients’ characteristics (n=233)

<table>
<thead>
<tr>
<th>T790M status</th>
<th>Slow progression</th>
<th>Classical progression</th>
<th>Rapid progression</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T790M negative</td>
<td>37 (21.3%)</td>
<td>108 (62.1%)</td>
<td>29 (16.7%)</td>
<td>0.02</td>
</tr>
<tr>
<td>T790M positive</td>
<td>3 (15.0%)</td>
<td>8 (40.0%)</td>
<td>8 (45.0%)</td>
<td></td>
</tr>
</tbody>
</table>

FA

0	37 (21.3%)	108 (62.1%)	29 (16.7%)	0.007
0.01-0.1%	0	3 (60.0%)	1 (20.0%)	
0.1-1%	0	3 (70.0%)	1 (20.0%)	
1-10%	0	3 (42.9%)	1 (20.0%)	
≥ 10%	0	1 (25.0%)	1 (20.0%)	

Table 2: Correlation between T790M mutation fractional abundance (FA) and time of progression (n=194)

- Slow progression: PFS ≤ 3 months; classical progression: PFS 3-6 months; rapid progression: PFS > 6 months

Figure 1: median overall survival (OS) and progression-free survival (PFS) according to T790M mutation status.

Figure 2: 2D representation of a T790M mutation positive case.

Figure 3: repartition of T790M mutation FA.

In multivariate analysis, OS was associated with the presence of a pre-treatment T790M mutation with FA between 1-10% (HR 3.5; CI 0.96-6.5, p = 0.04) or FA ≥ 10% (HR 16; 5.95 CI 4.7, p < 0.0001); PFS was associated with the presence of a pre-treatment T790M mutation only with FA ≥ 10% (HR 21; 5.95 CI 5.5, p = 0.001).

Acknowledgments: all patients, clinicians and biologists of the Biomarkers France project.

Disclosures: none

Funding: IFCT, AstraZeneca. Funding sources had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results.

Notes: